READINGS: Electronics Workbook 1 (ew1.pdf): Pages 28-65 Man of High Fidelity (armstrong.pdf): Chapters 4-6 This assignment is due at the beginning of the next class. There will be a one question quiz on this homework ONE WEEK after the homework is reviewed.
 Armstrong Reading Questions A1) What was Armstrong's Mother's maiden name? By 1917, What circuit was Armstrong receiving invention royalties of about \$500/month (same buying power as \$10,350/month today!) for?
2. Voltage Dividers
2.B1) Find V_{ab} , the voltage across R_2 from a to b , in Figure 2.1, on the right, using the voltage divider equation. 30 v +
Compare HW#2 Figure 1 to HW#1 Figure 4 until it is clear to you why the answer to HW#1.4b must be the same as the answer to HW#2.1 here.
2.B2a) Find the current I leaving the 30V source in Figure 2, on the right. 50Ω a
(Hint-start by combining the two 20 ohm resistors). $30 v + 20\Omega \ge 20\Omega \ge R2 R3$
2. <i>B2b)</i> Find the voltage V_{ab} from a to b (across R_3).
Figure 2.2 Series/Parallel Voltage Divider Circuit
2. B3) Using the voltage divider equation find the voltage V_{ab} from a to b (across R_2) in Figure 3.
Then examine and compare Figures 2 and 3 until it is clear to you why the answer to $\#2b$ must be the same as the answer to $\#3$.
Figure 2.3 Voltage Divider Circuit
3. Power Dissipation in Resistors
(NOTE: 1 mA = 0.001 Amp) 2.B4) Find the power dissipated in a 130 ohm resistor carrying 60mA
2.B5a) Find the power dissipated in a 100 ohm resistor carrying 60 mA.

2.B5b) Is the calculated power level for the 100 ohm resistor within the ratings of a **1/2 watt** resistor? (Yes, No) *Note: This question presumes the resistor is in an open well-ventilated space. If a resistor*

Note: This question presumes the resistor is in an open, well-ventilated, space. If a resistor is used in an enclosed space, e.g. inside a small box, it is good practice not to exceed 50% of the stated power rating.

MSCI 222C

4. Charging Capacitors

4.a. Consider a capacitor being charged through a resistor from a 16volt source. (presume the input voltage is exactly 16 volts).

2.B6a) What is the approximate theoretical value of voltage across the capacitor after one time constant?

2.B6b) What is the *approximate* theoretical value of voltage across the capacitor after 5 time constants?

4.b. If a capacitor is charged to exactly **16 volts** and is then discharged through a switch into a resistor.

2.B7a) What is the approximate voltage across the resistor, V_R, after one time constant?

2.**B7b**) What is the *approximate* voltage across the resistor, V_R, after 5 time constants?

Figure 2.5 Capacitor as Voltage Source Circuit

5. Calculating Time Constants

2.88) With a series resistor of $100 \text{K}\Omega$, what value of capacitance would be required to have a time constant of 1 minute?

(Due to current leakage in real electrolytic capacitors, the actual charging times will be slower. Ignore this effect and calculate an approximate, *ideal*, estimate of the time constant.)

Figure 2.6 RC Time Constant Circuit

2